Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(4): e11276, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38638369

RESUMEN

Ctenostomes are a group of gymnolaemate bryozoans with an uncalcified chitinous body wall having few external, skeletal characters. Hence, species identification is challenging and their systematics remain poorly understood, even more so when they exhibit an endolithic (boring) lifestyle. Currently, there are four Recent families of endolithic bryozoans that live inside mineralized substrates like mollusk shells. In particular, Penetrantiidae Silén, 1946 has received considerable attention and its systematic affinity to either cheilostomes or ctenostomes has been debated. Species delimitation of penetrantiids remains difficult, owing to a high degree of colonial and zooidal plasticity. Consequently, an additional molecular approach is essential to unravel the systematics of penetrantiids, their phylogenetic placement and their species diversity. We therefore sequenced the mitochondrial (mt) genomes and two nuclear markers of 27 ctenostome species including nine penetrantiids. Our phylogeny supports the Penetrantiidae as a monophyletic group placed as sister taxon to the remaining ctenostomes alongside paludicellids, arachnidioids and terebriporids. The boring family Terebriporidae d'Orbigny, 1847 were previously considered to be among vesicularioids, but our results suggest an arachnidioid affinity instead. Ctenostome paraphyly is supported by our data, as the cheilostomes nest within them. A Multiporata clade is also well supported, including the former victorelloid genus Sundanella. Altogether, this study provides new insights into ctenostome systematics, assists with species delimitation and contributes to our understanding of the bryozoan tree of life.

2.
Front Zool ; 21(1): 5, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443908

RESUMEN

BACKGROUND: One of the most peculiar groups of the mostly colonial phylum Bryozoa is the taxon Monobryozoon, whose name already implies non-colonial members of the phylum. Its peculiarity and highly unusual lifestyle as a meiobenthic clade living on sand grains has fascinated many biologists. In particular its systematic relationship to other bryozoans remains a mystery. Despite numerous searches for M. ambulans in its type locality Helgoland, a locality with a long-lasting marine station and tradition of numerous courses and workshops, it has never been reencountered until today. Here we report the first observations of this almost mythical species, Monobryozoon ambulans. RESULTS: For the first time since 1938, we present new modern, morphological analyses of this species as well as the first ever molecular data. Our detailed morphological analysis confirms most previous descriptions, but also ascertains the presence of special ambulatory polymorphic zooids. We consider these as bud anlagen that ultimately consecutively separate from the animal rendering it pseudo-colonial. The remaining morphological data show strong ties to alcyonidioidean ctenostome bryozoans. Our morphological data is in accordance with the phylogenomic analysis, which clusters it with species of Alcyonidium as a sister group to multiporate ctenostomes. Divergence time estimation and ancestral state reconstruction recover the solitary state of M. ambulans as a derived character that probably evolved in the Late Cretaceous. In this study, we also provide the entire mitogenome of M. ambulans, which-despite the momentary lack of comparable data-provides important data of a unique and rare species for comparative aspects in the future. CONCLUSIONS: We were able to provide first sequence data and modern morphological data for the unique bryozoan, M. ambulans, which are both supporting an alcyonidioidean relationship within ctenostome bryozoans.

3.
Org Divers Evol ; 24(1): 85-94, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38482159

RESUMEN

Recent surveys of Antarctic waters in the Terra Nova Bay (Ross Sea) revealed numerous bryozoan species including ctenostome bryozoans. Whereas cheilostome bryozoans are well-studied in these latitudes, ctenostomes remain highly neglected. Large ctenostomes are easily recognized by their lack of calcified skeletons, but this lack also renders them difficult and tedious to identify. As a result, histology and reconstructions of internal soft tissues are required to classify this group of bryozoans. Thanks to the availability of new specimens from Terra Nova Bay, a detailed analysis of growth form, gut morphology and tentacle number of two colonies, initially ascribed to the ctenostome bryozoan genus Alcyonidum Lamouroux, 1813, turned out to be a new species, Alcyonidium kuklinskii sp. nov., which we described in this study. These specimens were also barcoded (COI) and sequences compared to available ones. Together with the new species described here, a total of ten species of Alcyonidium is now known for the Southern Ocean, accounting for one eighth of the entire genus diversity. All Southern Ocean species appear to be endemic. In order to speed the identification of the Antarctic Alcyonidium species, we provide an identification key and a distribution map of all type species. In brief, colony morphology, zooidal size and, in particular tentacle number represent the most suitable characters for identifying species within this genus. Supplementary Information: The online version contains supplementary material available at 10.1007/s13127-023-00629-4.

4.
BMC Genomics ; 24(1): 711, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001438

RESUMEN

BACKGROUND: Bryozoans are mostly sessile aquatic colonial invertebrates belonging to the clade Lophotrochozoa, which unites many protostome bilaterian phyla such as molluscs, annelids and brachiopods. While Hox and ParaHox genes have been extensively studied in various lophotrochozoan lineages, investigations on Hox and ParaHox gene complements in bryozoans are scarce. RESULTS: Herein, we present the most comprehensive survey of Hox and ParaHox gene complements in bryozoans using four genomes and 35 transcriptomes representing all bryozoan clades: Cheilostomata, Ctenostomata, Cyclostomata and Phylactolaemata. Using similarity searches, phylogenetic analyses and detailed manual curation, we have identified five Hox genes in bryozoans (pb, Dfd, Lox5, Lox4 and Post2) and one ParaHox gene (Cdx). Interestingly, we observed lineage-specific duplication of certain Hox and ParaHox genes (Dfd, Lox5 and Cdx) in some bryozoan lineages. CONCLUSIONS: The bryozoan Hox cluster does not retain the ancestral lophotrochozoan condition but appears relatively simple (includes only five genes) and broken into two genomic regions, characterized by the loss and duplication of serval genes. Importantly, bryozoans share the lack of two Hox genes (Post1 and Scr) with their proposed sister-taxon, Phoronida, which suggests that those genes were missing in the most common ancestor of bryozoans and phoronids.


Asunto(s)
Proteínas de Homeodominio , Transcriptoma , Animales , Filogenia , Proteínas de Homeodominio/genética , Invertebrados/genética , Genes Homeobox , Genómica
5.
Proc Biol Sci ; 289(1986): 20221504, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36350215

RESUMEN

Bryozoans are mostly sessile colonial invertebrates that inhabit all kinds of aquatic ecosystems. Extant bryozoan species fall into two clades with one of them, Phylactolaemata, being the only exclusively freshwater clade. Phylogenetic relationships within the class Phylactolaemata have long been controversial owing to their limited distinguishable characteristics that reflect evolutionary relationships. Here, we present the first phylogenomic analysis of Phylactolaemata using transcriptomic data combined with dense taxon sampling of six families to better resolve the interrelationships and to estimate divergence time. Using maximum-likelihood and Bayesian inference approaches, we recovered a robust phylogeny for Phylactolaemata in which the interfamilial relationships are fully resolved. We show Stephanellidae is the sister taxon of all other phylactolaemates and confirm that Lophopodidae represents the second offshoot within the phylactolaemate tree. Plumatella fruticosa clearly falls outside Plumatellidae as previous investigations have suggested, and instead clusters with Pectinatellidae and Cristatellidae as the sister taxon of Fredericellidae. Our results demonstrate that cryptic speciation is very likely in F. sultana and in two species of Plumatella (P. repens and P. casmiana). Divergence time estimates show that Phylactolaemata appeared at the end of the Ediacaran and started to diverge in the Silurian, although confidence intervals were large for most nodes. The radiation of most extant phylactolaemate families occurred mainly in the Palaeogene and Neogene highlighting post-extinction diversification.


Asunto(s)
Briozoos , Ecosistema , Humanos , Animales , Filogenia , Teorema de Bayes , Briozoos/genética , Agua Dulce
6.
Mol Phylogenet Evol ; 139: 106529, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31176967

RESUMEN

The deep divisions at the base of the stylommatophoran land snails and slugs have proved to be controversial, with the phylogenetic position of the Scolodontidae remaining unresolved. Here we present a phylogenetic analysis of 34 stylommatophoran genera based on a combined dataset (5782 sites) of four loci with the aim of resolving the position of the Scolodontidae and their relationship to the 'achatinoid' and 'non-achatinoid' clades. We also evaluate the phylogenetic utility of different genes and gene partitions. The deep phylogenetic relationships within the Stylommatophora are now clearly resolved. The Scolodontidae are shown categorically to be the sister group to all other stylommatophoran groups with robust support and with all phylogeny reconstruction methods. The 'achatinoid' and 'non-achatinoid' clades are also strongly supported in the tree. The original LSU 1-5 fragment used extensively in studies of the Stylommatophora was found to be the most informative gene fragment and works well at resolving relationships at most levels in the Stylommatophora but does not reliably resolve the deep level relationships at the very base of the clade. The concatenated dataset of four genes employed in this study is not only informative at lower levels but also resolves the deep level relationships at the base of the Stylommatophora with robust support.


Asunto(s)
Gastrópodos/clasificación , Caracoles/clasificación , Animales , Teorema de Bayes , Gastrópodos/genética , Filogenia , Caracoles/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...